# Missing baryons in shells around galaxy clusters

**Dmitri Prokhorov** 

Paris Institute of Astrophysics Lebedev Physical Institute

## Baryons in galaxy clusters

SZ effect: 
$$y = \int n_e(r) \sigma_T \frac{kT_e(r)}{m_e c^2} dl$$
X-ray: 
$$b_X(E) \propto \int n_p(r) n_e(r) \Lambda(E, T_e) dl$$

Measurements of the X-ray emission and Sunyaev-Zel'dovich effect indicate that a significant fraction of baryonic mass is missing from the hot ICM (e.g. Afshordi et al. 2007).

Usually two hypotheses are used to derive the baryon fraction:

- hydrostatic equilibrium thermal equilibrium: Tp=Te

#### Cluster outskirts

External cluster regions show less X-ray emission with respect to the center, where the density is much higher. This lower emission translates in lower statistics in available X-ray observations.

#### **Assumptions:**

$$n(r) = n_0 \left( 1 + \frac{r^2}{r_c^2} \right)^{-\frac{3\beta}{2}}$$

$$kTdn = -\frac{GM_{tot}(r)\mu m_p n(r)dr}{r^2}$$

$$f(r) = \rho(r)/\rho_{tot}(r)$$

$$F(r,\beta) = \frac{f(r)}{f(r_c)} \qquad a = r_c \cdot \sqrt{\frac{9\beta - 10}{2 - 3\beta}}$$

$$F(a,\beta) = \sqrt{(4-3\beta)^{4-3\beta}(3\beta-2)^{3\beta-2}}$$





## Coulomb mean-free-path



$$\frac{e^2}{r} \approx k_B T$$

$$\frac{e^2}{r} \approx k_B T$$

$$l = \frac{1}{nr^2} \approx \frac{k_B^2 T^2}{ne^4}$$

$$l = \frac{3^{3/2} k_B^2 T^2}{4\pi^{1/2} n e^4 \ln \Lambda}$$

Coulomb mean-free-path in outskirts:

$$l = 3Mpc \cdot \left(\frac{T}{10keV}\right)^2 \cdot \left(\frac{10^{-5}cm^{-3}}{n}\right)$$

## Accretion model

accretion shock Rs



- collisionless region
- collision regions

for similar view of a quasar model (Meszaros, Ostriker 1983)

# Missing baryons in a shell around cluster

The proton random motion energy is of the order of the gravitational temperature:

$$T_{gr} = \frac{GM(R_{vir})m_p}{k_B R_{vir}}$$

The proton will be collisionless if l > L

$$L = H_0^{-1} \sqrt{\frac{k_B T_{gr}}{m_p}}$$

L is the maximal distance, which the proton can cover during the cluster age

The collisionless condition is equivalent to the inequality:

$$n < \frac{3^{3/2} k_B^2 T_{gr}^2}{4\pi^{1/2} L e^4 \ln \Lambda}$$

#### Cluster mass

Mass of gas shell between accretion shock and virial radius:

$$M_{shell}^{gas} = \frac{4\pi}{3} R_{vir}^3 \left( \frac{R_s^3}{R_{vir}^3} - 1 \right) nm_p$$

condition on n:

$$M_{shell}^{gas} < \sqrt{\frac{6\pi}{\Delta_c}} \left( \frac{R_s^3}{R_{vir}^3} - 1 \right) m_p^3 \frac{G^2 M^2 (R_{vir})}{e^4 \ln \Lambda}$$

If the missing baryons are situated in the collisionless shell:

$$M_{shell}^{gas} / M(R_{vir}) = f_b - f$$

$$M(R_{vir}) > \sqrt{\frac{\Delta_c}{6\pi}} \frac{(f_b - f) \ln \Lambda}{\frac{R_s^3}{R_{vir}^3} - 1} \frac{e^4}{G^2 m_p^3}$$

$$M(R_{vir}) > 3 \cdot 10^{15} M_{sun}$$

#### **Dimension mass**

$$\frac{e^4}{m_p^3 G^2} = 1.3 \cdot 10^{15} M_{sun}$$

Time scale for protons and electrons to equilibrate:

$$t_{eq}(p,p) \approx \sqrt{\frac{m_e}{m_p}} \cdot t_{eq}(p,e)$$

The electron will be cold between the accretion shock and virial radius if  $t_{eq}(p,e) > H_0^{-1}$ 

Condition on M(Rvir): 
$$M(R_{vir}) > \sqrt{\frac{\Delta_c}{6\pi}} \sqrt{\frac{m_e}{m_p}} \frac{(f_b - f) \ln \Lambda}{\frac{R_s^3}{R_{vir}^3} - 1} \frac{e^4}{G^2 m_p^3}$$

$$M(R_{vir}) > 7 \cdot 10^{13} M_{sun}$$

### Halo of EUV emission

Spectral surface brightness along a particular line of sight:

$$b(E) \propto \int n_e^2(r) \Lambda(E, T_e) dl$$

Normalized spectral surface brightness:

$$B(\theta) = \frac{b_h(\theta) + b_c(\theta)}{b_h(0) + b_c(\theta)}$$





Normalized spectral brightness for the Coma cluster: the hot gas (solid line), the hot gas + the baryonic shell (dashed line).

at observed energy 0.1keV

### Conclusions

The protons below the shock will be able to accrete into the galaxy cluster on a Coulomb time scale, which may be longer than the cluster age, and baryons may accumulate in the cluster outskirts.

#### Only for Fun

# **Equation for Coulomb** mean-free path:



#### **Rotated equation**



face of a smoker???